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Executive Summary 

With the goal of reducing the number of injuries and fatalities, this project aims to understand the key 

parameters (e.g., traffic loads, work zone location characteristics, personal vigilance levels, duration of 

construction work, safety messages exchanged between workers and installed sensors/vehicle) that play 

roles in achieving responsive behaviors in workers. Key questions this research will address include (a) 

what is the level of attention of workers with regard to the current work zone condition (e.g., vehicle 

head direction/speed toward work zone, worker vicinity to work zone perimeters) when they react 

to/ignore alarms, (b) what modalities, frequencies, and timings of pushing alarms are most effective, 

and (c) how notification systems can be calibrated for getting responsive actions from workers.  

The first component of this project focused on monitoring construction workers’ attention. To that end, 

we added a new functionality to the current VR platform to track the subjects’ attention through his/her 

head-movement and eye-movement to infer his/her gaze pattern. With the introduction of this method 

to measure subject’s attention, we captured additional critical information about the decision a worker 

makes (i.e., understanding if the subject was unaware of the dangerous situation or if the subject 

decided to ignore the alarm after an assessment of the danger level by analyzing their gaze patterns and 

body movements around the time notifications are sent). The second component focused on creating a 

calibrated notification delivery mechanism that is optimized to send alarms to grab the maximum 

attention of workers using reinforcement learning (RL). This RL model relies on the data captured in pilot 

demonstrations in partnering agencies, with students, staff, and faculty who participated in the IRB 

approved user studies (IRB FY2020-3946). 

The research outcomes showed that on the average it takes 2.5 seconds for a worker to react to an 

alarm. Data also showed that participants were more responsive to acknowledging alarms that were 

received with multiple stimuli (vibration + sound vs. only vibration). For additional awareness metrics 

calculated, workers were quick (between 1.5-3 seconds) to display responses (e.g., head turn, seeing a 

dangerous car, changing position) in the work zone. Regarding other characteristics of alarms analyzed, 

it was observed that regardless of duration and repetitions, it was the alarm modality people pay more 

attention to with vibration and sound combination people being more responsive to for turning towards 

the direction of traffic. Longer durations (=3.8 seconds as compared to 1.8 seconds) with longer pause 

periods (i.e., 2 seconds as compared to none or 1 second periods) in alarms receive faster response from 

participants, and shorter durations with short/no pause periods with less repetitions received faster 

response for head turns towards the direction of the traffic.  
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Results also indicated that the RL agent outperforms random alarm actions after a small number of 

training episodes. The optimization approaches within the field of RL research (PPO, actor-critic, Deep Q-

learning) will need to be explored further to see if the RL agent can at least choose alarm actions as 

expected by Monte Carlo simulations. Improvements to the attention monitoring system, such as 

distinguishing between when workers see vehicles in their central field of view or just their periphery, 

can also feed into ways the reward function can vary the final reward value for a better gradient. These 

improvements to the RL agent reward function, optimization approach, and training configurations will 

help future work on using RL to optimize alarm characteristics during live VR user studies. 
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Introduction 

In 2019, the Federal Highway Administration reported 762 crashes at roadway work zones, resulting in 

842 fatalities, 135 of which were construction workers (BLS, 2019). Nearly a third of these fatalities 

involved speeding vehicles (FHWA, 2022). A recent survey conducted by the Associated General 

Contractors (AGC) of America found that sixty percent of highway contractors reported motor vehicle 

accidents in their construction work zones during 2020 (AGC, 2021). 

Current safety measures for workers mainly involve safety training, which generally guides workers to 

be situationally aware of traffic conditions and alert other workers if they notice any safety hazards. 

Safety training and traffic construction guidelines offer recommendations for how workers should set up 

traffic control devices (e.g., cones, barrels) and signage to provide vehicle drivers advanced notice of 

work zone boundaries, especially for long-term work (i.e., a work with a duration > 3days) and 

intermediate work (i.e.,  a work with a duration <= 3 days). Short-term  (i.e., a work with a duration <1 

hour during daytime), and mobile work zones (i.e., work moves continuously) rely on smaller layouts of 

traffic control, leaving workers to rely on their own situational awareness and experience to maintain 

their safety. More novel approaches involve the use of work zone intrusion alarms, which generally use 

a stationary source of sound and light to warn workers of hazardous vehicles that approach or drive into 

the construction work zone boundaries (Mishra et al. 2021). 

Challenges with developing worker safety alarm systems are two-fold. The first challenge is designing an 

alarm system with features well suited to ambient work zone conditions, whether it’s how loud or bright 

the alarm sounds / lights are or how it is physically set up on sites. Workers may not hear or see the 

alarms amidst noisy or dark ambient working conditions. The second challenge is calibrating safety 

notification characteristics to be most effective in keeping workers alert of safety hazards. This is 

because workers frequently ignore alarms. This means that any alarm system design needs to emit 

safety notifications in a way that workers can both perceive and effectively maintain their situational 

awareness during their work day. Past research involved studies in real-world construction sites, where 

vehicular accidents are infrequent, or in large scale real-world test beds, where limited accident 

scenarios are evaluated due to participants’ safety. As a more feasible and effective alternative, the 

research team has developed an integrated platform of virtual reality (VR), micro traffic simulation, and 

wearable sensors. This platform has been used to evaluate how workers respond to different scenarios 

of hazardous traffic flows around work zones and identify what alarm characteristics can more 

effectively evoke worker response and keep their attention to nearby traffic. The platform enabled the 

research team to collect data on how workers respond to alarms configured with different modalities 

(e.g., sound and vibration), frequencies, and durations triggered by different intrusion and accident 

scenarios. The research team has then used this collected data to benchmark worker behavior and 
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physiological responses and train a reinforcement learning (RL) model to optimize these characteristics 

for increased situational awareness at work zones. 

Motivation 

The RL technology has found success in addressing various challenges in different domains such as 

games, flight control systems, and webpage advertising. Although challenges are domain specific, all 

applications share a need for an intelligent system to explore an unknown solution space and rapidly 

change its behavior soon after learning more about that solution space. This abstract problem is 

probably best understood in any complex game, like chess or StarCraft. The best move or action at any 

point in the game is dependent on many dynamically changing set of factors. The impact of these 

actions on the outcome of a game may not be understood until after analyzing all the series of events 

that took place in many game trials and correlating those events to those games’ final score. Moreover, 

the best game player can identify which factors are useful to predict how the game will turn out after 

making a specific move.  

The challenges of worker safety alarm systems particularly mirror the challenges in games and other 

domains. A construction site, while reasonably controlled with trained workers and site managers, is still 

a very dynamic environment, with constantly changing conditions such as improvised activities, 

weather, equipment-related noise, and adjacent traffic flow. Even if an intelligent safety alarm system 

has enough sensors to be aware of the changing work zone context, the real challenge lies in optimizing 

the alarm characteristics because 1) no data exists on the optimal characteristics corresponding to a 

high-dimensional data representation of a worker’s behavior and work zone, and 2) the alarm 

characteristics need to be optimized over a long period of time (e.g., at least multiple work days). This 

latter challenge has been observed for alarms in general where people experience fatigue after 

experiencing a number of alarms and frequently ignore them. It is possible that an intense alarm (i.e., 

high sound volume, high amplitude vibrations) that seems to trigger worker responses in the beginning 

of a work day may be less effective by the end of the day and will not help contribute to the long-term 

life safety of workers.  With the RL approach, an alarm system can learn which alarm characteristics 

workers respond to in the long run, while also remain flexible to dynamically changing conditions in real-

world work zones. With the research team’s previously developed bi-directional integrated VR and 

micro traffic simulation based platform, we will evaluate how well an RL model’s agent maintain worker 

reactions to its chosen alarm characteristics. 
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Background 

This section provides a synthesis of research work done in relation to (a) current and emerging sensing 

technologies adopted at traffic work zones,  (b) applications of VR in monitoring traffic worker attention, 

and (c) applications of RL and optimal control in civil applications. 

Current and Emerging Sensing Technologies Adopted at Traffic Work Zones 

Within the context of this report work zones take place on road/highway construction/ reconstruction 

projects and share the space with vehicle traffic most of the time. The layout of work zones can vary 

with the work to be performed (e.g., long term vs. short term), the location of them (i.e., urban vs. 

rural), and the type of roads (e.g., local roads vs. interstate highways). According to the Manual on 

Uniform Traffic Control Devices (MUTCD)(USDOT, 2009), work zones can be categorized as mobile, short 

duration, short-term stationary, intermediate-term stationary, and long-term stationary, depending on 

the complexity of the work. Mobile work zones are for quick roadwork that takes up to an hour and 

needs to move intermittently (e.g., pothole filling, surveying, and tree trimming). Short-term work zones 

refer to the roadwork that happens during daytime for more than one hour but within a single day (e.g., 

traffic barrier repair, placement of overhead structures, and traffic hardware maintenance/installation) 

(Tapan et al. 2016).  Intermediate-term work zones are for roadwork that happens during daylight for 

more than a day but up to 3 days or last for more than an hour during nighttime (e.g., pavement 

markings, barriers, and temporary roadways) (Lewis, 1989). Finally, the long-term work zones are for 

roadwork that takes more than 3 days (e.g., installation of permanent barriers, marking in long 

segments of the road). The long-term and intermediate work zones usually have detailed safety 

guidelines and are thoroughly planned, whereas short-term and mobile work zones have fewer specific 

safety guidelines and separation from traffic (Wong et al. 2011) Thus, workers in short-term and mobile 

work zones are more likely to be exposed to the risk of being struck by upcoming traffic (Wong et al. 

2011). 

The most common safety measures adopted in previous years to improve work zone safety have 

targeted improving drivers’ behaviors. Some of these safety measures aim to control the traffic speed by 

using fixed or variable message signs, speed display trailers, flagging and lane width reduction (TRB, 

2005), and designing work zone layouts based on the Federal Highway Administration (FHWA) 

regulations (FHWA, 2020).  On the other hand, safety measures targeting construction workers focus on 

the use of intrusion safety alarm systems such as SonoBlaster (i.e., impact-activated intrusion safety 

alarm system) (Transpo, 2020), Intellicones (i.e., modular radio-based intrusion safety alarm system) 

(Intellicone, 2020), and Advanced Warning and Risk Evasion Systems (AWARE) (i.e., radar-based 

intrusion safety alarm system) (Aware, 2020). These intrusion safety alarm systems, along with worker 



 

 Work Zone Safety III: Calibration of Safety Notifications through Reinforcement Learning and Eye 

Tracking  4 

safety training and the use of high-visibility Personal Protective Equipment (PPE) are a few of the 

measures used to increase work zone safety from the perspective of workers.  

Despite current safety measures, workers still find themselves exposed to traffic and at risk of being 

struck by a vehicle; especially, the workers of mobile and short-term work zones (i.e., work lasts less 

than one day). Workers like flaggers and surveyors usually have no barriers between them and the 

traffic, which is one of the reasons why they are at the highest fatality risk (McAvoy et al. 2007; 

Domenichini, 2017). In addition to having few to no barriers, these road users need to direct their 

attention to the job they perform, which can limit their visual and auditory response to the events 

happening in the background. One way of capturing the attention of roadside workers is intrusion alarm 

systems. Intrusion alarm systems make use of audio and lighting features to safely alarm workers of an 

intruding vehicle. The primary challenge of these systems is that the auditory and visual cues might get 

mixed with those present in the work zone. Alternative to existing visual and auditory warning systems, 

tactile sensory warning systems are another common attention enhancement tool used in work zones, 

which have been shown to transmit accurate information regarding an intruding vehicle. However, 

these solutions still need to be further investigated to validate their use and assess their performance in 

work zones (Sakhakarmi and Park, 2019; Park and Sakhakarmi, 2019), to understand how workers 

respond to different modalities of safety alarm systems at work zones, without exposing them to real 

danger- hence the scope of the platform developed in this research work. 

Applications of Virtual Reality in Relation to Worker Safety in the AEC 

VR has been widely used in construction worker safety studies due to its ability of replicating realistic 

work zone environments. Furthermore, VR allows for an immersive experience of hazardous situations 

without actually putting workers in physical harm. Studies using VR in the domain of worker safety 

concentrates on three main aspects, as safety training and education, safety planning, and safety 

inspection (Li et al. 2018). Despite the wide adoption of VR in construction worker safety applications, 

challenges remain for horizontal work zones, as the traffic pattern represented in these VR 

environments are often static and follow pre-determined trajectories. This prevents workers from 

experiencing a realistic work zone environment, and more  importantly, limits the possibility of studying 

the impact of worker behavior on traffic patterns. There exist research efforts in integrating traffic 

simulations with VR. However, previous studies implementing VR and traffic simulation in the context of 

safety focus on the perspective of the driver. For example, Bella (2005) performed calibration and 

validation of a driving simulator to study the effects of temporary traffic signals on the traffic speeds in 

different areas of a work zone. The variation in drivers’ speeding behavior in the vicinity of work zones 

under different scenarios continued to be a subject of interest in recent studies (McAvoy et al. 2007; 

Domenichini, 2017). Another use of VR for work zone safety is for the analysis of key factors contributing 
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to work zone crashes from the perspective of drivers (MacAvoy et al. 2007). Even though traffic 

simulation has been integrated with VR in work zone safety studies to simulate traffic patterns in VR 

environments, there is a gap in the literature regarding its use to understand the behavior in work zones 

of construction and road workers, as well as dynamic representation of traffic patterns under the 

influence of construction worker activities. 

For safety training and education, traditional means (e.g., lectures, videos, and demonstrations) suffer 

from low engagement and learning from trainees. VR-based safety training aims to simulate realistic 

work zones where trainees can rehearse tasks safely while identifying potential risk factors for an 

operation (Lukas et al. 2008). The realistic and interactive VR environments increase workers’ attention 

and enthusiasm to learn and to improve safety knowledge. Detailed information of the construction 

project, such as site layout, egress access, and material locations can be replicated in VR, which allows 

trainees to better understand the construction operations planned onsite. Studies comparing VR-based 

safety training with traditional methods concluded that VR is a more efficient and engaging platform for 

trainees to learn safety related knowledge (Burke et al. 2011).  On the other hand, VR-based training is 

found to be superior to training in the physical work zone environment due to its ability to simulate 

unsafe scenarios without putting trainees in danger. Furthermore, studies comparing VR-based training 

and training in physical settings concluded that VR requires fewer mental efforts from the trainees since 

demonstrations onsite can be overwhelming for trainees (Lin et al. 2011). 

Safety planning refers to the identification of potentially unsafe scenarios and practices in a construction 

project prior to the actual construction. Traditional safety planning relies on 2D drawings, accident 

reports, and computer-aided design models (CAD files). This prevents construction crew, site safety 

managers, and owners from intuitively understanding the site layout, design requirements and previous 

incidents’ circumstances (Pearlman, 2014). In this regard, VR-based safety planning offers superior level 

of immersion as compared to traditional mediums of planning documents (Du et al. 2018). As a result, 

construction crews can achieve higher ability of risk assessment and level of situation awareness, which 

are critical to site safety (Zuluaga, 2016).  Evidence showed that in VR environments, construction 

workers are more likely to identify unsafe practices and scenarios as compared to photos and videos 

(Zuluaga, 2016). 

Safety inspections is the critical examination of the construction sites in terms of site safety and worker 

behavior (Gheisari and Esmaeili, 2019). To effectively monitor worker behavior and site environment, 

site safety managers do visual inspections during walk-arounds or through the help of cameras installed 

at various locations onsite. However, these current practices have drawbacks, as physical walk- arounds 

take time and prevent the site safety manager to holistically understand the overall safety condition of 

the job site. On the other hand, video streams from static camera locations provide the flexibility of 
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monitoring multiple locations simultaneously but limit the possibility of freely examine the site 

environments from different angles (Tuttas et al. 2017). VR-based safety inspection reconstructs the job 

site in a realistic 3D virtual environment, while locations of worker, material, and equipment can be 

tracked and represented in VR in real-time, which provide insights of travel speeds, paths, and locations 

of workers and equipment. Compared to traditional inspection methods such as camera recordings, the 

VR-based safety inspection enhances the ability of safety managers to identify job site hazards more 

promptly by enabling more flexible viewing angles and better context-awareness. 

This study builds on previous applications of VR in the worker safety domain and adds a traffic 

simulation component to generate realistic traffic patterns in VR while enables the possibility of 

studying worker behavior’s impact on traffic simulation. This bi-directional communication made 

possible between VR platforms and simulation modeling tools, as well as the assessment of alternative 

ways to select among VR and simulation options are the main differences between earlier studies 

utilizing VR in worker safety studies. 

Applications of Reinforcement Learning and Optimal Control in Civil Eng. 

Applications 

Reinforcement learning has found previous success in video games, flight controls, webpage advertising, 

and other domains where the best action to take within a dynamic environment is not readily available 

due to a lack of available data and near infinite possible combinations of environment features (Vinyals 

et al. 2019; Ng et al. 2006; Tang et al. 2013; Yang and Lu, 2016). RL algorithms therefore attempt to 

learn through trial and error, recording the actions taken, the outcomes of those actions, and the state 

of the environment features it observes over time. In effect, these algorithms can improve their 

performance as they collect more data in real-time, rather than wait for a large dataset to be populated 

beforehand. A particular early example of RL, multi-arm contextual bandits, found particular success in 

identifying, among a large set of online ad images, the one ad that most likely prompts users to click on 

them in response (Tang et al. 2013; Yang and Lu, 2016). As their name suggests, multi-arm bandits 

modify a set of variables and optimize them in response to an immediately observed payoff or reward, 

like an octopus playing multiple slot machines. Contextual bandits also factor in information and 

constraints regarding the surrounding environment (e.g., maximum ad image size allowed, surrounding 

webpage content). In our study, the objective of identifying the alarm characteristics based on worker 

reactions is quite similar to the multi-arm contextual bandit problem and motivates us to investigate RL 

approaches for calibrating alarm characteristics. More notable and sophisticated RL approaches attempt 

to optimize a series of actions after observing how those actions affect a final result. These approaches 

have demonstrated significant success in games (Schrittwiser et al. 2020). Policy Proximation 

Optimization (PPO) has shown promise within the category of policy gradient algorithms, which attempt 
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to find the best actions based on predictions of how rewards may change given a slight change in policy 

(i.e., stochastic gradient ascent) (Schulman et al. 2017). Our initial RL model utilizes PPO to select the 

best alarm characteristics over the course of a single VR user trial. 

Based on investigations in control systems research, RL has also been explored in the transportation 

systems, construction engineering, and facilities management domains for optimal control of HVAC 

systems, construction robotics, and traffic controls (Zou et al. 2020; Lee and Kim, 2021; Santos et al. 

2013; Wu et al. 2022). Given the potential safety risks of deploying RL-based control systems to learn 

from real-world environments, RL research in AEC/FM relies on specialized simulation environments for 

training and evaluating the RL models (e.g., building energy simulation, construction site, roadway 

networks). These simulations must replicate the physics of the real-world environment while being able 

to generate a variety of possible scenarios the control systems could perform under. In effect, these 

simulation environments have a means of generating synthetic training data for the RL models to learn 

from. Our initial RL model utilizes a simulation environment consisting of SUMO for simulating the same 

traffic conditions faced by users in VR studies, as well as a separate model for replicating how those 

users physically behaved (e.g., head turns, body movement, tapping the smartwatch). Both components 

of the simulation environment are necessary for the RL model to freely select different alarm 

characteristics, observe different possible outcomes, and optimize those characteristics accordingly. 

Novel applications for RL in worker safety have been somewhat limited, in part because of a limited 

availability of data on construction workers and means for simulating how workers behave in 

construction sites. Recently developed cost effective VR systems enable researchers to observe how 

workers could behave in a variety of construction scenarios while easily recording data on their 

instantaneous movements and physiology. One recent study has started to investigate using VR and RL 

to observe when workers are in an unsafe body posture and how interactive displays can alert workers 

from moving into those poses (Akanmu et al. 2020). The proposed VR system has yet to yield results on 

the performance of RL based approaches for posture alerts. Overall, given the prior success of RL 

applied in both AEC and outside domains, there is a need to evaluate how such optimization approaches 

can perform to improve alarms for worker safety in uncertain and dynamic roadway construction sites. 

Research Methodology 

The research methodology included developing a bidirectional VR and micro traffic simulation based 

platform,  using this platform for capturing human behavioral data in dangerous traffic scenarios 

through biometric sensors and smart watch applications, and using these data to statistically analyze 

user behaviors as  well as building RL agents to eliminate unnecessary alarms and calibrate alarms based 

on alarm characteristics (modality, frequency, duration of alarms) that people are more responsive to. 
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Hence, in this section we provide an overview of the (a) previously developed VR and micro traffic 

simulation integrated platform, (b) IRB approved user study to collect human behavior data in 

dangerous traffic scenarios, and scenarios implemented in VR, (c) data collected during the user studies, 

(d) type of alarms generated via smart watches, and (e) initial statistical analyses on alarm 

characteristics, and (f) boundaries of the RL model. Findings of the research has been presented in the 

results section. 

An Overview of the VR-HIL Traffic Simulation Platform 

Previous year’s work by the research team resulted in the development of an experiment platform 

integrating virtual reality (VR) and hardware-in-the-loop (HIL) micro-traffic simulations for testing and 

evaluating characteristics of alarms that alert construction workers of safety hazards.  This integrated 

platform enables hardware-in-the-loop for synchronous VR, traffic simulation and sensor interactions. It 

allows a two-way information flow between the virtual work zone and the worker safety system, with 

the help of an application server to relay the information. As seen in Figure 1, there are two components 

of the platform, as (1) the virtual work zone, which includes a traffic simulation tool, a proxy server, and 

a VR environment, where traffic patterns are realistically simulated in VR and worker behaviors in VR 

circle back to the simulation; and (2) the worker safety system, which includes monitoring hardware and 

alarming hardware, where the worker location with regard to the work zone perimeter was monitored 

by sensors and the worker receives alarms whenever a dangerous situation was detected in the VR 

environment. The connection between sensing (i.e., ultrasonic sensor) and VR only initiates an alarm to 

be sent to the smartwatch worn by the user, rather than dictating the traffic movements in the VR 

environment directly. These two parts are connected through application servers (i.e., simulation 

application server, and VR application server) to relay information. The combination of these three 

components generates realistic traffic flow structured upon reliable and complex traffic models to be 

presented in the VR environments and allows for a platform that can be used to test worker safety 

hardware by conducting user studies in VR.  

Essentially, the platform can be simplified as an implementation of the information flow pathways 

depicted in Figure 1, including a feedforward path, a feedback path and a HIL path. The feedforward 

path transmits the vehicular and traffic control information simulated in a traffic simulation tool to the 

VR environments. Reversely, the feedback path brings the traffic control changes that occurred in the VR 

environments back to the traffic simulation tool. The HIL path bridges sensor hardware deployed in the 

user studies to monitor worker location (i.e., ultrasonic sensors) and alarm workers of potentially 

dangerous situations (i.e., a smartwatch) and the virtual work zone, where simulated traffic pattern can 

cause hazardous situations, and traffic simulation can be impacted by worker behaviors (e.g., step out of 

work zone boundaries). In the following subsections, each component of the platform along with 
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possible alternatives will be introduced in detail, each alternative will be evaluated based on the 

challenges identified, and implementation details using the selected alternatives for each component 

will be provided.  

This platform utilized application programming interfaces (APIs) that allowed micro traffic simulation 

software (e.g., Simulation of Urban Mobility -SUMO) to control vehicle trajectories in VR environments 

(e.g., Unity3D). Workers in the VR environment could perform  virtual work tasks that could feedback to 

traffic simulation vehicle trajectories in real-time. For instance, if a worker placed cones in the path of 

traffic in Unity VR, those actions would be tracked back to the SUMO, which would simulate vehicles 

moving to adjacent lanes to avoid the cones. The feedback loop between traffic simulation and VR 

environments models a virtual work zone for testing worker safety hazard scenarios. 

 

Figure 1: Hardware in the loop integration of VR, traffic simulation, worker alarm system, and 

work zone monitoring system 

The experiment platform can also be used for HIL simulations of the smartwatch (e.g., Apple Watch) and 

physical monitoring hardware (e.g., ultrasonic sensors). A custom smartwatch application alerts the 

worker when it detects hazardous events logged by an external simulation application server. Hazardous 

event data could be sent to the simulation application server from the traffic simulation software, which 

can simulate speeding cars and collisions. Additional monitoring hardware could also send hazardous 

event data to the simulation application server. For example, ultrasonic sensors placed near the worker 

in the lab could detect when a worker had physically moved out of the safe work area and trigger 

smartwatch alarms. Both physical monitoring hardware and simulated traffic events can trigger 
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smartwatch alarms, which could impact the worker’s behavior in the VR environment and result in 

changes in simulated traffic. A worker’s response to the smartwatch alarm interface (e.g., tapping the 

watch’s screen) is also logged in the simulation application server. The suite of smartwatch alarm and 

other monitoring hardware make up the worker safety system being tested on the VR-HIL platform.   

More details can be found in previous publications (Ergan et al. 2022). 

An Overview of the IRB-approved User Study and Scenarios Implemented 

The research team implemented multiple traffic scenarios in VR using gaming engines and integrated 

them with the micro simulation platform. These VR models have been used as part the designed user 

studies that were conducted at NYU Building Informatics and Visualization Lab (biLAB). An overview of 

the designed user study is provided in Figure 2. Invited participants were asked to wear a head-mounted 

display to be immersed in the implemented traffic scenarios (Figure 2a), a smart watch to capture their 

heart rate variations and send alarm notifications (Figure 2b), a heart rate monitoring device (i.e., E4) to 

track their biometric data variation over time with respect to alarm periods (which could be an 

indication of situational awareness), and utilize a pair of controllers to navigate in and interact with the 

virtual environments. Smartwatch is capable of receiving heart beat data of participants throughout the 

experiments and sending alarms with various configurations. Each alarm a participant receives has a 

modality, which is defined as the stimuli an alarm uses to warn workers (i.e., vibration, vibration + 

sound), a frequency, which is defined as the number of repetitions an alarm is provided to a worker 

after a triggering alarm,  and varies between 1 and 3 repeats and a duration, which is defined as  the 

length of time the stimuli (e.g., sound +vibration) is given to a worker and ranges between 1.8 to 3.8 

seconds; and a pause period, which is defined by the length of time the stimuli pauses between repeats, 

and ranges between  0 to 2 seconds. The integrated platform overviewed above has been deployed to 

maintain bidirectional data flow between the traffic simulation and the VR based on participants’ 

actions in the VR scenarios (Figure 2c). 
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Figure 2: User study setup utilizing the integrated platform 

Each participant had to perform the several tasks subject to various alarm events and smartwatch alarm 

characteristics depending on the scenario Three scenarios were developed in VR: Scenario 1 simulates a 

virtual world for an unstructured mobile work zone along an urban street, Scenario 2 is a virtual world 

for an urban highway work zone replicating a sensor installation task on the highway, and Scenario 3 is a 

virtual world for an urban intersection work zone replicating the tasks of construction surveying.. New 

York University’s IRB approved the VR user studies (IRB-FY2020-3946) and the research team conducted 

them with a total of thirty-three participants for Scenario 1 ten participants for Scenarios 2 and 3. All 

subsequent sections discuss the data collected from the initial cohort of thirty-three participants in the 

first Scenario. 

In Scenario 1, participants were asked to place six traffic cones in an unstructured mobile work zone 

along an urban street (Figure 3).  

In each trial of the VR user study with Scenario 1, participants had to move a cone to each of the blinking 

white/yellow lights visible to participants in the virtual environment. Cones placed in the correct 

location would be registered by the traffic simulation, and subsequent vehicle behavior would treat the 

cones as obstacles to avoid. Vehicles would subsequently move down the opposite lane of the street. 

Each trial concluded when all six cones were placed in the correct location, as registered in the VR 
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environment when the white/yellow lights turned green (Figure 3).  Each participant conducted this 

sequence of work tasks twice in order to experience two modalities of alarms (vibration only, and sound 

with vibration combined). The order of modalities was randomized among participants. 

 

Figure 3: A closeup view in virtual world for Scenario 1 

Before the actual trials where data was recorded, participants had a chance to conduct these tasks in a 

training session with help from research personnel and without simulated traffic or triggered alarms in 

order to help them familiarize themselves with the VR environment and controllers. Only after 

participants stated they felt comfortable with the VR system and performing the tasks absent of traffic 

did the experiments proceed. 

During a user study, three possible events would trigger an alarm on the smart watch.  

• Trigger Event 1: Speeding Vehicles: Speeding zones in SUMO traffic simulation were set up to 

detect speeding vehicles (Figure 4). When a vehicle’s speed exceeds 25 miles per hour (~12 

m/s), a speeding vehicle alarm is immediately raised and triggers an alarm to be sent to the 

smart watch. In Scenario 1, three of five cars were set to be speeding vehicles and were spaced 

such that the speeding alarms would be raised at least 15 seconds apart. 
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Figure 4: A closer view from the virtual world showing speeding cars and their detection 

zones 

• Trigger Event 2: Collision Vehicles: After the first 10 seconds of the trial, a car in SUMO and VR 

was set up to collide with the work zone (Figure 5). An alarm was raised right when the car 

intruded a virtual work zone. 

 

Figure 5: A closer view from the virtual world showing an example collision vehicle 
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• Trigger Event 3: Out of bounds: If a worker stands at the edge of the street’s opposite lane, the 

ultrasonic sensor tracking the worker’s physical location would trigger an alarm (Figure 6). 

Participants were made aware of the ultrasonic sensor before the actual trials. However, since 

the alarm sounds and vibrations were randomized, participants had to realize that their physical 

location caused the alarm completely on their own. Only three participants triggered the 

ultrasonic sensor’s perimeter alarm. Given this very limited amount of data for Perimeter alarm 

events, only Speeding and Collision alarm events are analyzed in this report. 

 

Figure 6: A photo from the real experiment boundary tracked with the ultrasonic sensors 

Regardless of these three possible trigger events, the smartwatch alarm app would select a randomized 

sequence of alarm sounds and vibrations. In other words, the current experiment design intended there 

to be no easy way for participants to distinguish the trigger event cause of the alarm from the sounds 

and vibrations alone. Time stamps of each alarm event are recorded in the Simulation Application Server 

(Figure 1). As explained before, these alarm events trigger an alarm of random characteristic (e.g., 

duration, frequency). To emphasize, participants were told that the alarms they would receive on the 

watch had to be caused by one of the above three trigger events but the characteristics of the alarms 

was randomized and had no relation to their cause. That said, the cause of the alarm is recorded in the 

attention monitoring system and is analyzed in relation to how people reacted. 
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An overview of the data collected during the user studies 

To determine the situational awareness of workers at work zones with respect to triggering events, the 

research team defined several features that should be considered while determining the attention range 

of workers. Attention is first detected when a worker acknowledges that alarm on the smart watch. 

However, this is not the only way to detect that workers are aware of the situation they are in. Even if 

they do not acknowledge the alarm by tapping the smart watch to stop the alarm, they can show other 

behaviors that are safe beyond the alarm acknowledgement (see Figure 7).  These features have been 

identified as the followings: 

• whether a participant acknowledged an alarm on to the smartwatch user interface 

• gaze direction 

• visual attention to potential hazards (e.g., cars, trucks, etc.)  

• overall body position and movement 

• heart rate variability (HRV)  

Past research has examined the importance of these features on the construction worker safety  (Luo et 

al. 2016; Jeelani et al. 2019; Lee et al. 2017). While the relative importance of each factor as they related 

to a worker’s overall safety is not well understood, RL agent should at least consider data relevant to 

each factor to inform how a smartwatch agent can learn and adjust its alarm settings. Data on a 

particular worker’s behavior and physiology should then be benchmarked against standard values to 

evaluate whether that data indicates a safe or unsafe level of worker attention. Figure 7 shows 

illustrations of worker behaviors under triggered events that will be considered as features for worker 

attention to dangerous situations. 
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Figure 7: Illustrations of features that are included in worker attention towards safety alarms 

Acknowledgement of alarms on smart watch interface: Both the alarm triggering events (i.e., speeding, 

collision, out of bounds) and worker responses (i.e., acknowledged, not-acknowledged) on the 

smartwatch interface are tracked by the smartwatch and logged in the simulation application server. If  

a user taps the smartwatch screen to dismiss an alarm, the response time can be calculated as the time 

elapsed between the time of dismissal and time when the alarm is triggered. 

Gaze Direction in the VR Platform: VR platforms also allow developers to track the user’s camera 

orientation as rotations which are quantified as quaternions by default. Each camera rotation, R_t, at 

time, t, can be logged by the VR platform as the rotation’s quaternion, where a quaternion is  a 4-

dimensional representation of rotations in 3D space. Quaternion definition is a well established 

mathematical convention that is used by Unity and Python libraries for 3D rotations and details can be 

found here.  
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𝑹𝒕 = 𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛(𝑊𝑡 , 𝑋𝑡 , 𝑌𝑡 , 𝑍𝑡) 

Quaternions, however, cannot be interpreted directly as the gaze direction, g, the unit vector that 

represents where the worker and their VR camera is looking at (Figure 8). If the initial gaze direction at 

the start of the VR simulation is known, VR platforms like Unity3D have an API to convert quaternions to 

a rotation matrix and use that matrix to transform an initial gaze direction. 

 

Figure 8: Gaze direction vector of the worker as tracked by the VR headset 

For our current experiments, the initial gaze direction,  �̂�𝑜, is represented by the positive Z-axis 

direction: 

�̂�𝑜 = [0,0,1] 

Then the worker’s gaze direction can be calculated by applying the rotations at time t, 𝑹𝒕, to the initial 

gaze direction: 

�̂�𝑡 =  𝑹𝒕  �̂�𝑜 = [𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡]  

Gaze direction can then be timestamped and sent by the VR platform to the simulation application 

server. The current VR platform records the gaze direction at roughly 40Hz. The gaze directions and 

quaternions have been used to find if a worker was looking at the direction of the traffic (hence notices 

the triggering event) even if s/he did not acknowledge the received alarm on the smart watch interface.   

A sample data plotted for the calculated gaze directional changes over time is provided in Figure 9. 
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Figure 9: A sample data from a participant showing the calculated gaze direction angles. Note 

that the green dots on the plot are indicating head turn speed events, vertical orange lines 

are indicating triggered events. 

Detecting Potential Hazards in VR: Various VR headsets have eye tracking hardware and software 

capabilities. The currently available system for the research team, however, does not have any eye 

tracking capabilities. That said there are other methods to track the worker’s area of focus and 

determine whether the worker paid attention to potential hazards like cars or trucks. 

In the current system, the raytracing between the VR camera focal point and the worker’s entire field of 

view is used to track whether vehicles are seen by workers. While this cannot confirm if the worker was 

specifically looking at a particular hazard in the general area, ray tracing detection results on the VR 

display, particularly in the moments after each alarm, is currently utilized to quantify a worker’s 

attention. When we calculated this feature, we differentiated what a worker detects within their field of 

view as potential hazards (cars that are in their field of view) and the triggering event of speeding and 

collision cars. A sample data plotted for the calculated number of cars seen within the field of view of 

workers over time is provided in Figure 10. 

 

Figure 1: A sample data showing the calculated number of cars in field of view of a worker. 

Note that the vertical orange lines are indicating triggered events 
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Body Position and Movement - VR Platform: VR platforms such as Unity3D allow developers to 

continuously track a user’s headset position within the virtual world as X,Y,Z coordinates. These values 

are world coordinates by default, meaning they can be relative to some faraway origin point in the VR 

environment space rather than some meaningful location in the scenario. In Unity3D, workers walk on 

the X-Z plane with the Y-axis as the “up/down” direction (Figure 11).  These coordinates are 

continuously logged on the simulation application server with timestamps. The current VR platform 

records the worker’s position at roughly 40Hz. The recorded data has been used to derive the original 

location and movement along the work zone over time given a triggered event timestamp.  

  

Figure 2: Screenshot of Unity3D worker’s VR perspective (left) and bird’s eye view (right). 

Note the red and blue arrows on the right top corner, which indicate the X-axis and Z-axis 

location of the worker in the VR environment 

A sample data plotted for the calculated worker positional changes over time is provided in Figure 12.  
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Figure 3: A sample data from a participant showing the calculated road positions. Note that 

the green dots on the plot are indicating movement events, vertical orange lines are 

indicating triggered events 

Heart Rate Variability through the PPG Wristband: A photoplethysmography (PPG) wristband uses 

electrical signals derived from light reflected due to changes in blood volume pulse (BVP) during heart 

activity. Additional signal processing algorithms then calculate heart rate (HR) and inter beat interval 

(IBI) based on those BVP measurements.  HR and IBI are metrics that show change of heart rate activity 

over time. The current experiments utilized the Empatica E4 wristband which can record all three 

quantities (BVP, HR, and IBI) and send that timestamped data to the simulation server. All data collected 

in these sensors can be displayed for each trial of each user’s VR experiment session. A sample data for 

tracked and calculated IBI is provided for a worker in Figure 13. 

 

Figure 4: A sample data from a participant showing the calculated IBI. Note that the vertical 

orange lines are indicating triggered events 

Types of Alarms Generated via the Smartwatch 

Safety notifications provided to participants through the smartwatch were developed relatively 

independent of the specific scenarios the participants would encounter. Given the limited knowledge of 

worker alarm responses, the research team set out to develop and test a wide variety of alarm 

characteristics. The Apple Watch operating system, watchOS, has its own application programming 

interface (API) for emitting nine built-in types of alarms of various sounds and vibration, each lasting 

around 0.8 seconds. Among these types, the Retry built-in type was chosen since it had the most intense 

sound and vibration pattern. Previous alpha tests of the Apple Watch informed this selection as being 

one of the more noticeable and intense alarm types rated by watch users. 
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In order to test different alarm durations and frequencies, this single built-in alarm type had to be 

repeated multiple times with a variety of different pauses in between. Strictly speaking, the Apple 

Watch API does not allow any application to emit a single built-in alarm type for a completely 

continuous duration. The smallest “gap” in time allowed between two consecutive built-in alarms is 0.2 

seconds. This study treats consecutively emitted built-in alarms as an effectively continuous alarm 

duration. For example, a 0.8 second duration built-in alarm emitted 3 consecutive times is considered in 

this study to have an alarm duration of 2.8 seconds. Figure 14 illustrates how the alarm duration is 

defined relative to the built-in alarms’ duration.  

 

Figure 5: Alarm duration defined relative to the built-in alarms’ duration 

To test a variety of alarm frequencies, the Apple Watch application can emit a single alarm duration at 

multiple repetitions and pause periods. The total length of time of the notification period  is the sum of 

the alarm durations and pause periods. This will be will be referred to as the total notification period, as 

illustrated in Figure 15 below. 
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Figure 6: Example showing alarm durations, pause periods with respect to total notification 

period (with the number of repetitions as 2) 

The Apple Watch application for this study can emit fifteen different notifications to test all different 

combinations of the alarm durations, pause periods, and repetitions (frequencies) given in Table 1. 

When an alarm event (e.g., speeding car) occurs, the Apple Watch application selects a random 

notification, thereby emitting a random alarm duration, pause period, and frequencies.  

Table 1: Notifications (modes) implemented in user studies 

Notification 

# (Mode) 

Alarm  

Duration (s) 

Pause  

Period (s) 

# of 

repetitions 

(Frequency) 

Notification  

Period (s) 

  D P R R*D+(R-1)*P 

1 1.8 0 1 1.8 

2 2.8 0 1 2.8 

3 3.8 0 1 3.8 

4 1.8 1 2 4.6 

5 2.8 1 2 6.6 

6 3.8 1 2 8.6 

7 1.8 2 2 5.6 

8 2.8 2 2 7.6 

9 3.8 2 2 9.6 

10 1.8 1 3 7.4 

11 2.8 1 3 10.4 
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12 3.8 1 3 13.4 

13 1.8 2 3 9.4 

14 2.8 2 3 12.4 

15 3.8 2 3 15.4 

While the alarm durations for this study were selected based on previous alpha tests with the Apple 

Watch in isolation, the frequencies and pause periods were selected to test if these alarm variations 

could produce wider variety of worker reactions. The notifications in this current Apple Watch 

application do not account for any expected time frame of human responses to alarms. As explained 

earlier, the triggering events (i.e., speeding car, collision car, out of bounds) did not predetermine the 

notification type emitted by the Apple Watch.  

In terms of alarm modality, the Apple Watch API’s alarm types can only be emitted with sounds and 

vibrations or with only vibrations. Switching between these modalities can only be done by a user 

switching on and off the Apple Watch’s Silent Mode in its system-wide settings. This prevents any Apple 

Watch application from changing notification modality automatically and inhibited the research team 

from testing worker responses to different alarm modalities during a single VR simulation trial. 

Therefore, participants in the VR user studies conducted two trials, one for each alarm modality (sound 

with vibration alarms, or vibration only alarms) fixed during a single trial. 

To clarify the terminology, the list of parameters that play role in defining an alarm is defined in the 

following short glossary: 

• Modality: the stimuli an alarm uses to warn workers (i.e., vibration, vibration + sound). 

• Alarm duration (D):  the length of time the stimuli (e.g., sound +vibration) is given to a worker and 
ranges between 1.8 to 3.8 seconds. 

• Frequency (# of repetitions, R): the number of repetitions an alarm is provided to a worker after a 
triggering alarm, varying between 1 and 3 repeats. 

• Pause period (P):  the length of time the stimuli pauses between repeats, and ranges between  0 to 
2 seconds. 

• Notification/mode and its period: Notification (also referred to as mode) is a combination of alarm 
durations, frequencies, and pause periods. There are 15 modes tested in this study. Notification 
period is  the total duration elapsed between the first alarm emitted after a triggering event and the 
last alarm duration lapsed including the pause periods in between, and is calculated as R*D+(R-1)*P. 
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Initial Statistical Analyses on Alarm Characteristics 

Preliminary analysis evaluated the variation in features defined earlier in the report for detecting 

attention and situational awareness of workers across alarm characteristics, assuming they were 

independent variables: 

• Alarm modalities: Sound and vibration combined, or vibration only. Given that there are 
only two sample groups for analysis, a one-way analysis of variance (ANOVA) F-test was 
used to determine if the sample distributions were significantly different. 

• Alarm duration: 1.8, 2.8, or 3.8 seconds. Given that there are more than two sample groups 
for analysis, a Kruskall-Wallis H test was used to determine if the sample distributions were 
significantly different. 

• Alarm frequencies: 1, 2, or 3. Given that there are more than two sample groups for 
analysis, a Kruskall-Wallis H test was used to determine if the sample distributions were 
significantly different. 

• Alarm pause periods: None when emitted once, 1 second or 2 seconds when repeated twice 
or three times. Given that there are more than two sample groups for analysis, a Kruskall-
Wallis H test was used to determine if the sample distributions were significantly different. 

• Number of previous alarms: Number of previous alarms experienced by the worker 
beforehand within the VR trial. This variable was analyzed specifically because alarm fatigue 
is a notable issue with safety alarms. While certain users ended up experiencing 9 alarms, 
only sample groups of users who experienced 0 to 5 previous alarms were included in this 
analysis, since Kruskall-Wallis requires sample sizes be at least 5 or greater. 

 

Boundary Set for the Reinforcement Learning Model 

Reinforcement learning (RL) is a machine learning approach where an agent can learn to maximize a 

reward by observing and interacting with an environment without prior external input guidance (i.e., not 

supervised learning). In the context of this project, the agent is a context aware and intelligent version 

of the alarm application used on the smartwatch in previously conducted VR user studies. Instead of 

emitting random alarm characteristics (durations, frequencies, and sounds/vibrations), the alarm agent 

will choose a set of alarm characteristics to emit, referred in RL as actions. These agent’s actions are 

based on a policy, a function that predicts which alarm characteristics are likely to trigger the worker to 

physically react. Data calculated for the identified features of attention that RL agent considers are 

marked in Figure 16.  These predictions of worker reactions would be based on prior data from the 

environment, which includes the worker wearing the smartwatch, their progress in a sequence of 

construction activities, and the traffic vehicles moving around the work zone. The alarm agent can store 

constantly provided data from the environment as observations during a learning episode.  
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Figure 7: Illustrative showing the features of attention that RL agent considers 

More importantly, the alarm agent will focus on how workers react to the alarms to quantify an 

evaluation score for how effective the agent’s choice in alarm characteristics were in triggering a 

reaction. This evaluation score derived from worker reactions serves as a reward for the alarm agent see 

Figure 17 for list of actions, observation states, and reward function elements). By recording these 

observations and rewards from the environment, the alarm agent can regularly update its predictions of 

worker reactions to future alarms to inform how it picks alarm characteristics to maximize reward in 

future episodes. Ultimately, the rewards and observations reinforce how the alarm agent optimizes 

alarm characteristics to promote safe worker behaviors in roadway construction sites as it observes 

more and more episodes of worker and work zone environment data. Therefore, the parameterization 

of observations and rewards will need to be carefully defined to ensure the alarm agent contributes to 

worker life safety in roadway construction sites. This section serves primarily as a preliminary definition 

of the reinforcement learning model’s parameters before RL training simulations are conducted. 
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Figure 8: RL parameters defined: actions, observation states, and reward function elements 

Actions defined for the RL agent:  

The agent will make several decisions regarding each alarm.  

1. Decide whether to raise the alarm or not, even if the traffic simulation detects a speeding 
vehicle, work zone intrusion, or out of bounds. 

𝑤𝑟𝑎𝑖𝑠𝑒 =  {
𝟏 , 𝑟𝑎𝑖𝑠𝑒 𝑎𝑙𝑎𝑟𝑚

𝟎 , 𝑑𝑜 𝑛𝑜𝑡 𝑟𝑎𝑖𝑠𝑒 𝑎𝑙𝑎𝑟𝑚
 

 

2. Choose an alarm modality, 𝑤𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 

𝑤𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 =  {
𝟏 , 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑛𝑙𝑦 𝑎𝑙𝑎𝑟𝑚

𝟐 , 𝑠𝑜𝑢𝑛𝑑 𝑎𝑛𝑑 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑎𝑟𝑚
 

 

3. Choose an alarm mode, 𝑤𝑚𝑜𝑑𝑒, a value that represents a specific combination of duration, 
frequency, and pause period specified in Table 1 above. 
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The agent’s actions regarding alarms, 𝐴𝑖, can therefore be represented as: 

 

𝐴𝑖 = 𝑤𝑟𝑎𝑖𝑠𝑒 [𝑤𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 , 𝑤𝑚𝑜𝑑𝑒] 

such that 𝐴𝑖 = [0, 0] means the alarm agent decided not to raise an alarm. All other non-zero 

combinations denote the agent decides to emit an alarm.  

Reward function defined for the RL model:  

If we use an analogy here to say that the RL agent will act like a “safety coach”, reward function helps to 

review the different forms of worker reactions to alarms that the coach should reward workers to do 

more often: 

1. Worker avoids a collision with vehicle. 
2. Worker taps the smartwatch screen to acknowledge the alarm. 
3. Worker turns their head (i.e., changes their general gaze direction towards the incoming traffic). 
4. Worker sees cars and detects the hazardous vehicle (i.e., worker’s field of view includes cars 

and the event triggering car). 
5. Worker moves their body quickly away from the incoming traffic. 

As the numbering above suggests, the research team is presuming a ranking for these forms of worker 

reactions in descending importance for their safety. This ranking will inform the overall logic for how the 

alarm agent calculates rewards for individual alarms, as explained later in this section. That said, it is 

unknown within the research literature and occupational safety databases in how some of these specific 

forms of worker reaction ultimately correlate to incidence of worker injury and fatality. Such 

correlations could be drawn after running a significant number of VR user studies where collisions could 

occur on the VR platform. The above ranking could then be informed by empirical data rather than the 

team’s intuition on safe behaviors. 

With the exception of worker collision with vehicles, these forms of worker reactions have been 

quantitatively measured using the following time-based metrics that evaluate the data captured in VR 

user studies. When each alarm is emitted, the RL agent will record experiment data as part of a reaction 

history within a certain timeframe, 𝒕𝒇𝒓𝒂𝒎𝒆, afterwards. Within this reaction history, the RL agent will 

calculate time-based metrics as described below. Certain metrics will involve calculations between 

timesteps (∆𝒕) of the reaction history, which is 0.02 second (50Hz) for the current VR- traffic simulation 

platform. Then, the RL agent will compare these metrics to an expected reaction time, 𝒕𝒆𝒙𝒑, a value that 

should be less than the reaction history timeframe, 𝒕𝒇𝒓𝒂𝒎𝒆.  
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The following metrics has been defined in this study to be used by the RL agent for each form of a 

worker’s alarm reaction. 

1. Worker avoids collision with vehicle  

Collision Boolean, 𝒇𝒄𝒐𝒍𝒍𝒊𝒅𝒆 - In the VR engine, Unity, the worker’s entire body is idealized as 

a 3D capsule geometry and set as a “Collider” object. Vehicles have 3D Box geometry 

colliders as well. Unity constantly calculates and checks when any of these Collider 

geometries intersect and can then determine the boolean value, 𝒇𝒄𝒐𝒍𝒍𝒊𝒅𝒆, representing 

whether a worker’s body collides with a vehicle at any moment. 

𝒇𝒄𝒐𝒍𝒍𝒊𝒅𝒆 = 𝟏 𝑖𝑓 𝑤𝑜𝑟𝑘𝑒𝑟 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝟎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Of note, unlike the subsequent values below, this parameter is always updated, regardless 

of whether an alarm is emitted or not. 

2. Worker taps the smartwatch screen to acknowledge the alarm 

Acknowledgement Time, 𝒕𝒂𝒄𝒌 - The time elapsed between when the alarm was emitted on 

the watch and when the worker tapped the watch screen to acknowledge the alarm. An 

example calculation of this metric is illustrated in Figure 18. If the worker ignores the alarm, 

then 𝒕𝒂𝒄𝒌 = 𝒕𝒇𝒓𝒂𝒎𝒆 + 1, which will exceed the expected reaction time 𝒕𝒆𝒙𝒑. 

 

Figure 9: Illustration of how watch response/acknowledgement time is calculated 
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3. Worker turns their head (i.e., changes their general gaze direction) 

Head Turn Reaction Time, 𝒕𝒉𝒆𝒂𝒅 - The time elapsed between when the alarm was emitted 

on the watch and when the worker performed the maximum change in gaze direction 

between equal timesteps and within a timeframe 𝒕𝒇𝒓𝒂𝒎𝒆 after the alarm. Note that 𝒕𝒉𝒆𝒂𝒅 

will generally be less than timeframe 𝒕𝒇𝒓𝒂𝒎𝒆 but not necessarily less than the expected 

reaction time 𝒕𝒆𝒙𝒑. Figure 19 shows an example calculation of this metric, in blue, assuming 

∆𝒕 = 0.5 second timesteps and 𝒕𝒇𝒓𝒂𝒎𝒆 = 1 second timeframe. Actual calculations will be 

done between 0.02 second timesteps. 

 

Figure 10: Illustration of how Vehicle Detection Reaction Time, 𝒕𝒗𝒆𝒉, and Head Turn Reaction 

Time, 𝒕𝒉𝒆𝒂𝒅, are calculated 

4. Worker sees the hazardous vehicle (i.e., worker’s visual attention detects a vehicle). 

Vehicle Detection Reaction Time, 𝒕𝒗𝒆𝒉 - The time elapsed between when the alarm was 

emitted on the watch and when worker first sees the hazardous vehicle in their field of 

view. Figure 19 shows an example calculation of this metric, in red. If the worker never sees 

the hazardous vehicle, then 𝒕𝒗𝒆𝒉 = 𝒕𝒇𝒓𝒂𝒎𝒆 + 1, which will exceed the expected reaction 

time 𝒕𝒆𝒙𝒑. 
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5. Worker moves their body quickly. 

Body Movement Reaction Time, 𝒕𝒃𝒐𝒅𝒚 - The time elapsed between when the alarm was 

emitted on the watch and when the worker performed the maximum change in his/her 

position in the virtual work zone between equal timesteps. Note that 𝒕𝒃𝒐𝒅𝒚 will generally be 

less than timeframe  

𝒕𝒇𝒓𝒂𝒎𝒆 but not necessarily less than the expected reaction time 𝒕𝒆𝒙𝒑. Figure 20 shows a 

hypothetical example calculation of this metric, assuming ∆𝒕 = 0.5 second timesteps and 

𝒕𝒇𝒓𝒂𝒎𝒆 = 1 second timeframe. Actual calculations will be done between 0.02 second 

timesteps. 

 

Figure 11: Illustration of how Body Movement Reaction Time, 𝒕𝒃𝒐𝒅𝒚, is calculated 

Conventional RL models formulate the reward function to calculate a single scalar value for an agent to 

maximize. As this project is comparing multiple dimensions of a worker’s reaction to an expected 

reaction time, there is still the matter of using the separate comparisons to formulate a single reward 

value, 𝑅𝑖, calculated after each alarm. Numerous approaches have been suggested for this general 

problem of multi-objective reinforcement learning. For now, this project will consider a cascading 

hierarchical decision tree structure for calculating a single scalar reward, as illustrated in Figure 21.  
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Figure 12: Reward function hierarchy 

The hierarchy is based on the presumed ranking presented at the beginning of this section. If the worker 

collides with the car, a large negative reward or cost, −𝐶𝑐𝑜𝑙𝑙𝑖𝑑𝑒, is assigned after the alarm. If not, the 

reaction time metrics are sequentially compared to the expected reaction time. A scalar reward value is 

calculated based on which reaction time metric first falls under the expected reaction time in the 

hierarchy. This is why body movement is last in the hierarchy. As long as the worker did not collide with 

a vehicle, this decision tree only rewards a worker for moving their body if they did not acknowledge the 

alarm on the watch, nor saw the correct vehicle, nor even turn their head. If no reaction is observed at 

all after the alarm, then a small negative reward, −𝜀, is the final reward resulting from that alarm. This 

will slightly penalize workers who do not react at all to the alarms. Preliminary cost and reward values 

are provided in Table 2. 
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Observation States defined for the RL agent: 

Returning to the “safety coach” analogy again, we now identify what aspects of a worker’s current 

behavior or condition, at any given moment, should be worth focusing on to help pick an alarm action. 

The observation state is a 1D vector that the RL agent will use to capture these aspects. While traffic 

worker safety literature does not often offer guidance to workers on specific physical movements to the 

level of detail familiar to professional sports athletes, safety training and guidelines do emphasize the 

general importance of situational awareness and maintaining a safe distance from traffic. Therefore, the 

alarm agent’s observation state should evaluate the following: 

• How far away is the worker from the nearest vehicle? 

• Does the worker see the correct hazardous vehicle? 

• Does the worker at least see nearby vehicles, regardless of whether they are hazardous or not? 

Table 2: Preliminary reward and cost values in RL model training 

 Reward Cost 

−𝐶𝑐𝑜𝑙𝑙𝑖𝑑𝑒  -1000 

𝑅𝑎𝑐𝑘 5  

𝑅𝑣𝑒ℎ 4  

𝑅ℎ𝑒𝑎𝑑 3  

𝑅𝑏𝑜𝑑𝑦 1  

−𝜀  -0.1 

 

The RL agent will evaluate these questions by analyzing worker behavior data within a fixed timeframe, 

𝒕𝒇𝒓𝒂𝒎𝒆, over previous simulation timesteps. For now, the research team will assume this fixed 

timeframe is equal to the reaction history timeframe described earlier (𝒕𝒇𝒓𝒂𝒎𝒆). For each question 

above, a quantity will be calculated: 
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• How far away is the worker from the nearest vehicle? 
This is evaluated by measuring and finding the minimum distance, 𝒅𝒎𝒊𝒏, between worker and 

vehicles in the last 𝒕𝒇𝒓𝒂𝒎𝒆 seconds, thereby quantifying how well the worker has maintained 

distance with traffic. 

 

• Does the worker see the correct hazardous vehicle? 
This is evaluated by a boolean variable, where: 

 

𝒇𝒉𝒂𝒛 = 𝟏 OR 𝟎  

 

depending on whether the worker saw the correct hazardous vehicle or not in the last 𝒕𝒇𝒓𝒂𝒎𝒆  

seconds. 

 

• Does the worker at least see nearby vehicles, regardless of whether they are hazardous or 
not? 
This is evaluated by a boolean variable, where: 
 

𝒇𝒗𝒆𝒉 = 𝟏 OR 𝟎 

 

depending on whether the worker saw any vehicle or not in the last 𝒕𝒇𝒓𝒂𝒎𝒆 seconds. 

Additionally, the alarm agent’s observation state will contain the cause of the alarm when traffic 

simulation detects speeding vehicles and collisions. The overall observation state can be parameterized 

as a vector including time elapsed in the episode and all of the aforementioned values: 

[𝑡, 𝑑𝑚𝑖𝑛, 𝑓ℎ𝑎𝑧, 𝑓𝑣𝑒ℎ , 𝑤𝑒𝑣𝑒𝑛𝑡 ] 

While it is also possible for an agent to record and store a time series of observation states, an 

observation state history in RL terminology, the research team’s current implementation of the RL agent 

only calculates and uses the most recent observation state for selecting the alarm.  

Synthetic data generation: 

Ideally, we could train the RL agent by running additional trials of VR user studies. Each VR user trial 

would be a training episode. Pairs of observation states and actions taken by the alarm agent as well as 

the cumulative reward at the end of the episode are collectively recorded in an experience history. At 

the end of each episode, the agent updates its policy based on this experience history to use in the next 

episode. However, setting up and running VR user studies to train the alarm agent can be a very time 

and labor-intensive activity. In the past year, the research team has managed to conduct VR user studies 
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with 50 unique participants, far below any statistically significant sample size for adequate model 

training. In this section, we detail and approach we implemented to generate synthetic training data for 

the alarm agent. As before, the synthetic data training will still run the same traffic simulations as done 

in the real VR user studies. But synthetic worker behavior data has been generated by a separate 

machine learning model (Figure 22). Training a machine learning model to generate realistic worker 

behavior data is a challenge all of its own. Various models have been considered by the research team 

(e.g., autoencoders, transformer-attention mechanisms). Details of these models are beyond the scope 

of this report but an overview of how these models are trained separately and work with the RL alarm 

agent training loop will be described. Overall, the synthetic data generator serves as a substitute for real 

workers in VR for training the alarm agent.  

Training and Testing: 

We implemented the following simulation to train the RL agent (Figure 23).  

 

 

 

Figure 13: Prediction of worker behavior for generation of synthetic data for observation 

states 
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Figure 14: RL alarm agent training loop 

Testing or evaluating the RL agent is the same loop, but without any updates to the policy. Typically, the 

average of all episodes’ cumulative rewards is taken as the performance metric in for RL agent 

evaluation.  Results of the statistical tests conducted with the data and the RL training process are 

provided in the next section. 

Results 

Results are discussed in two sections. First section provides the statistical analysis done on the captured 

data on VR studies. The second section provides the RL training outcomes.  

Worker Reaction Benchmark Results 

We analyzed several metrics to understand the impact of changes on alarm configurations on workers’ 

response types and durations. We defined four response types that are considered an action that is 

considered as situational awareness. These include (a) workers tapping the smartwatch to acknowledge 

received alarms, (b) workers turning their head towards the approaching traffic after receiving alarms, 
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(c) workers detecting cars in their field of view after receiving alarms (and further analyzed if the cars 

they saw were the cars that triggered alarms), and (d) workers moving in the negative direction with 

respect to the normal direction of the traffic flow direction (i.e., moving away from the traffic). We 

analyzed the data with respect to these four actions across participants and across alarm modalities, 

frequencies, and durations. This section provides the results of histograms on types of actions taken 

over time by all participants across modalities and the reaction times for each action per alarm modality.   

Analysis of response times per alarm configuration: 

Figures 24 shows histograms of reaction times for each measure of worker reaction to all alarm 

configurations. Vehicle visual attention times are often close to zero because participants usually saw 

vehicles in their peripheral field of view. The attention monitoring system currently does not distinguish 

between whether the participant sees a vehicle in the center of their VR field of view or periphery.   

 

(a)        (b) 

 

  (c)       (d) 
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Figure 15: Distribution of reaction times across four response types for all alarm types 

Figure 24 shows that reaction times across response types confine within 1.5-3 seconds timeframe in 

general except the watch acknowledgement.  Initial analysis showed that response times do not change 

drastically across alarm durations and frequencies, so the plots only show response times across 

response types across both modalities. Table 3 shows the average and standard deviation of reaction 

times across worker response types. The mean reaction times in Table 3 were used as expected reaction 

times (E[t]) for the reward function. In the table, ‘alarm acknowledged’ means workers tap the smart 

watch to acknowledge the alarms, ‘positive head turn’ means workers turn their heads towards the 

traffic direction, ‘detected vehicles in FOV’ means workers see vehicles in their field of view (FOV) when 

they turn their heads, and ‘positive body movement’ means workers move away from the traffic lane. 

Calculations of these response times are detailed in the research method section above.  

Table 3: Statistics for worker reaction times for each response type across all alarms 

 

Reaction Time (s) 

Response type mean std 

Alarm Acknowledged  6.63 3.75 

Positive Head Turn 2.51 2.36 

Detected Vehicles in FOV 1.83 2.98 

Positive Body Movement  2.7 2.6 

The mean and standard deviation of reaction times for each response type (Table 3) show that workers 

have situational awareness before they acknowledge alarms on the watch itself. It takes less than 2.5 

seconds to be aware of a problem around themselves by turning their heads, seeing approaching traffic, 

and changing their location until they acknowledge them on the watch. This is a supporting evidence 

that there are other forms of safe behaviors that can be considered to eliminate alarm fatigue at work 

zones before triggering alarms by studying worker reactions beyond acknowledgements.  
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The research team also analyzed the mean response times across response types (i.e., body movement, 

head turn, visual attention to vehicles, and smartwatch acknowledgement) for every alarm 

configuration participants received (where alarms showed variations with respect to modality, 

frequency, and duration- randomly). Tables 4 thru 7 show these statistics for each response type with 

green and red cells respectively indicating faster and slower reaction times for specific combinations of 

alarm characteristics.  

Watch acknowledgment response times are shown in Table 4. Most apparent is the fact that a number 

of people did not acknowledge a number of alarm combinations. Acknowledgement times for specific 

alarm characteristics are not further analyzed given the lack of data on watch taps.  

Table 4: Statistics for watch acknowledgement times in response to alarm configurations 

(modality, duration, frequency, repetitions) 

modality mode 
duration 

(s) 

pause period 

(s) 

# of 

repeats 
n mean (s) std (s) 

so
u

n
d

 +
 v

ib
ra

ti
o

n
 

10 1.8 1 3 3 5.729 3.686 

7 1.8 2 2 1 3.292 0 

13 1.8 2 3 1 0.973 0 

1 1.8 n/a 1 1 3.001 0 

5 2.8 1 2 2 4.986 0.649 

14 2.8 2 3 4 7.281 4.387 

6 3.8 1 2 2 11.003 1.274 

12 3.8 1 3 1 3.327 0 

9 3.8 2 2 1 4.956 0 

15 3.8 2 3 1 10.352 0 

modality mode 
duration 

(s) 

pause period 

(s) 

# of 

repeats 
n mean (s) std (s) 

vi
b

ra
ti

o
n

 o
n

ly
 

7 1.8 2 2 1 3.586 0 

11 2.8 1 3 3 10.866 2.786 

14 2.8 2 3 1 8.443 0 

6 3.8 1 2 1 4.53 0 

12 3.8 1 3 1 6.964 0 

15 3.8 2 3 1 8.912 0 

3 3.8 n/a 1 1 3.054 0 
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However, a couple of observations regarding watch acknowledgement response times are noted:  

(a) On the average across participants and received alarms, participants acknowledged alarms more 

when they received vibration + sound alarms and acknowledged them lesser when the modality 

is vibration only. 

(b) On the average, participants tend to acknowledge alarms faster when they received shorter 

duration, vibration and sound alarms. 

(c) On the average, participants acknowledged alarms slower when they received longer duration 

alarms with repeats. 

As observed in Table 5, participants (n=7), on average, turned their heads the fastest (1.188 seconds) 

after vibration alarms of mode 6 (duration of 3.8 seconds duration, repeated every second, repeated 

two times) and turned their heads the slowest (n=3, 6.289 seconds) after vibration alarms of mode 14 

(duration of 2.8 seconds duration, repeated every two seconds, repeated three times) across all 

configurations. However, when we look at modality 1 (sound and vibration) only, the fastest reaction 

time is with mode 13 with 1.52 seconds on the average for 1.8 sec duration with three repeats, whereas 

the slowest reaction time is with mode 3 with 3.43 seconds on the average for a long 3.8 sec duration. 

When we look at modality 2 (vibration only), it is the same finding for the entire table (mode 6 fastest, 

mode 14 slowest). The table further indicates that: 

(a) regardless of duration and repetitions, it is the alarm modality people pay more attention to with 

vibration and sound combination people being more responsive to,  

(b) longer durations with longer pause periods in alarms receive faster response from participants, 

and  

(c) shorter durations with short/no pause periods with less repetitions receive faster response for 

head turns towards the direction of the traffic.  

When we look at the vehicle detection times within the field of view of participants when they turn their 

heads towards the traffic direction, we observe the findings in Table 6. Participants (n=10) see 

hazardous vehicles the fastest (0.102 second) after sound and vibration alarms (duration of 1.8 seconds, 

repeated every 2 seconds, repeated three times) and slowest (n=7, 5.787 seconds) after vibration alarms 

(duration of 1.8 seconds duration, repeated every second, repeated three times). The table further 

indicates that: 

(a) when vibration and sound are combined as the modality, people are quicker in detecting 
hazardous vehicles in shorter durations (1.8 and 2.8 seconds) as compared to 3.8 sec duration 
alarms, 

(b) when vibration only alarms are sent, people show erratic response across durations, but tend to  
be quicker in detecting vehicles at shortest duration alarms with longer pause periods (1.8 
seconds) or longest  duration  with repeats.  
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Table 5: Statistics for head turn reaction times in response to each alarm configuration  

Alarm Characteristics Head turn Reaction Time (s) 

modality mode duration (s) 
Pause 

period (s) 

# of 

repeats 
n mean (s) std (s) 

so
u

n
d

 +
 v

ib
ra

ti
o

n
 

7 1.8 2 2 10 1.937 1.885 

13 1.8 2 3 10 1.52 1.475 

4 1.8 1 2 10 3.194 2.314 

10 1.8 1 3 13 2.793 3.361 

1 1.8 n/a 1 5 2.42 1.823 

8 2.8 2 2 9 2.709 1.908 

14 2.8 2 3 9 3.266 2.308 

5 2.8 1 2 7 2.801 2.05 

11 2.8 1 3 2 3.229 0.451 

2 2.8 n/a 1 8 2.812 2.409 

9 3.8 2 2 7 2.839 2.231 

15 3.8 2 3 8 1.881 1.334 

6 3.8 1 2 13 1.659 1.392 

12 3.8 1 3 2 1.772 1.375 

3 3.8 n/a 1 7 3.43 4.228 

modality mode duration (s) 
Pause 

period (s) 
repeats n mean (s) std (s) 

vi
b

ra
ti

o
n

 o
n

ly
 

7 1.8 2 2 10 2.374 3.361 

13 1.8 2 3 8 2.414 2.77 

4 1.8 1 2 8 3.871 3.765 

10 1.8 1 3 7 2.427 1.537 

1 1.8 n/a 1 3 5.233 2.998 

8 2.8 2 2 7 1.433 0.92 

14 2.8 2 3 3 6.289 4.037 

5 2.8 1 2 13 2.031 0.906 

11 2.8 1 3 9 2.759 1.618 

2 2.8 n/a 1 13 2.91 2.155 

9 3.8 2 2 6 2.404 3.152 

15 3.8 2 3 5 3.759 2.543 

6 3.8 1 2 7 1.188 0.854 
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12 3.8 1 3 6 1.851 1.348 

3 3.8 n/a 1 15 1.969 1.449 

Table 6: Statistics for vehicle detection times in response to each alarm configuration  

Alarm Characteristics Vehicle Detection Reaction Time 

modality mode duration (s) 
pause 

period (s) 

# of 

repeats 
n mean (s) std (s) 

so
u

n
d

 +
 v

ib
ra

ti
o

n
 

7 1.8 2 2 10 5.268 11.068 

13 1.8 2 3 10 0.102 0.089 

4 1.8 1 2 10 3.222 6.34 

10 1.8 1 3 13 1.034 1.344 

1 1.8 n/a 1 5 1.506 1.624 

8 2.8 2 2 9 1.895 2.428 

14 2.8 2 3 9 1.148 1.438 

5 2.8 1 2 7 1.664 2.196 

11 2.8 1 3 2 2.154 2.051 

2 2.8 n/a 1 8 1.741 2.176 

9 3.8 2 2 7 2.124 3.611 

15 3.8 2 3 8 2.019 1.652 

6 3.8 1 2 13 3.679 6.146 

12 3.8 1 3 2 5.021 4.945 

3 3.8 n/a 1 7 1.684 1.244 

modality mode duration (s) 
Pause 

period (s) 
repeats n mean (s) std (s) 

vi
b

ra
ti

o
n

 o
n

ly
 

7 1.8 2 2 10 1.261 1.768 

13 1.8 2 3 8 1.23 1.507 

4 1.8 1 2 8 2.447 2.59 

10 1.8 1 3 7 5.787 10.849 

1 1.8 n/a 1 3 0.547 0.697 

8 2.8 2 2 7 1.777 2.194 

14 2.8 2 3 3 3.912 3.373 

5 2.8 1 2 13 2.012 2.029 

11 2.8 1 3 9 2.838 3.652 

2 2.8 n/a 1 13 0.973 1.684 



 

 Work Zone Safety III: Calibration of Safety Notifications through Reinforcement Learning and Eye 

Tracking  42 

9 3.8 2 2 6 2.134 2.245 

15 3.8 2 3 5 0.289 0.252 

6 3.8 1 2 7 1.52 1.817 

12 3.8 1 3 6 0.773 0.95 

3 3.8 n/a 1 15 1.752 1.927 

Regarding body movements, certain participants (n=6) on average, moved their bodies 1.048 seconds 

after receiving vibration alarms of mode 9 (duration of 3.8 seconds, repeated every 2 seconds, repeated 

twice) (Table 7). On the other extreme, participants (n=10) moved their bodies 4.214 seconds after 

receiving sound and vibration alarms of mode 13 (duration of 1.8 seconds, repeated every 2 seconds, 

repeated three times). The table also indicates that: 

(a) when vibration and sound are combined as the modality, people are in general quicker in 
moving away from the traffic when they receive the alarms in longer durations, or alarms with 
shorter pause periods. 

(b) when vibration only alarms are sent, people tend to  be quicker with shortest duration alarms or 
longest duration alarms with long pause periods.  

Table 7: Statistics for body reaction times in response to alarm characteristics  

Alarm Characteristics Body Movement Reaction Time 

modality mode duration (s) 
Pause 

Period(s) 
repeats n mean (s) std (s) 

so
u

n
d

 +
 v

ib
ra

ti
o

n
 

4 1.8 1 2 10 2.878 1.909 

10 1.8 1 3 13 3.254 2.579 

7 1.8 2 2 10 2.822 3.754 

13 1.8 2 3 10 4.214 3.682 

1 1.8 n/a 1 5 1.727 1.386 

5 2.8 1 2 7 2.152 2.238 

11 2.8 1 3 2 2.293 1.618 

8 2.8 2 2 9 3.659 3.551 

14 2.8 2 3 9 2.274 2.136 

2 2.8 n/a 1 8 4.031 4.258 

6 3.8 1 2 13 2.085 2.227 

12 3.8 1 3 2 2.676 0.348 

9 3.8 2 2 7 3.517 2.227 

15 3.8 2 3 8 2.515 2.325 
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3 3.8 n/a 1 7 2.02 1.056 
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Table 7(continued): Statistics for body reaction times in response to alarm characteristics  

Alarm Characteristics Body Movement Reaction Time 

 

modality mode duration (s) Pause (s) repeats n mean (s) std (s) 

vi
b

ra
ti

o
n

 o
n

ly
 

4 1.8 1 2 8 2.579 1.758 

10 1.8 1 3 7 1.884 0.967 

7 1.8 2 2 10 2.036 1.283 

13 1.8 2 3 8 2.537 2.798 

1 1.8 n/a 1 3 2.047 0.552 

5 2.8 1 2 13 3.187 3.192 

11 2.8 1 3 9 2.744 2.653 

8 2.8 2 2 7 2.122 0.726 

14 2.8 2 3 3 3.304 2.059 

2 2.8 n/a 1 13 2.373 1.717 

6 3.8 1 2 7 2.232 1.085 

12 3.8 1 3 6 2.746 1.93 

9 3.8 2 2 6 1.048 1.111 

15 3.8 2 3 5 1.35 0.969 

3 3.8 n/a 1 15 3.587 3.565 

When only looking at alarm modality, we observed that participants doubled their response in 

acknowledging  sound + vibration alarms as compared to vibration only alarms. This means that 

combining multiple modalities in an alarm configuration could be more effective for worker reactions 

and should be further investigated. Mean acknowledgement times were also with a similar conclusion 

where participants were observed to be faster in responding to sound and vibration alarm configuration 

(i.e., with 6.129 seconds on the average) as compared to vibration only alarms (i.e., 7.565 seconds on 

the average) (Table 8). 

Table 8: Statistics for watch acknowledgement times in response to alarm modality 

Alarm 

Characteristics Watch Acknowledgement Time 

modality n_acknowledge % acknowledge mean std 

sound + vibration 17 14.2% 6.129 3.829 

vibration only 9 7.5% 7.565 3.405 
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Table 8 was used for Monte Carlo Simulations and RL model simulations for predicting when and how 

fast workers would acknowledge the alarms on the smartwatch. In other words, only the modality of the 

alarm was accounted for when predicting worker reactions on the smartwatch in subsequent analyses. 

Monte Carlo Reward Simulation 

Using the reward function defined in the previous section and a Monte Carlo simulation was run for 

predicting the expected rewards from 1000 random alarm characteristic combinations based on the 

means and standard deviation worker reaction times in Tables 4-8. Table 9 presents the average 

rewards received given the configurations of alarms. Vibration alarms of mode 1 (duration of 1.8 

seconds, never repeated) and 15 (duration of 3.8 seconds, repeated every 2 seconds, repeated three 

times) resulted in the highest rewards on average. Sound and vibration alarms of mode 1 (duration of 

1.8 seconds, never repeated) and 3 (duration of 3.8 seconds duration, never repeated).  This simulation 

findings overlap with the statistical results discussed in relation to Tables 4-7. 

Table 9: Monte Carlo simulation based predicted-rewards for 1000 random alarm 

combinations 

Mode 

Modality 

vibration Sound + vibration 

1 919.4 722.3 

2 331.6 196.5 

3 253.7 735.8 

4 524.6 358.9 

5 319.4 512.1 

6 771.4 500.0 

7 358.1 336.1 

8 690.2 375.4 

9 875.0 300.1 

10 810.2 228.0 

11 328.1 459.1 

12 419.6 669.4 

13 437.5 395.2 

14 204.3 344.1 

15 1000.0 699.1 
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Figure 25 illustrates how these alarm characteristics often result in the highest reward earned through a 

body movement reaction (R=1000) and less frequently resulting in no reaction at all (R=-250).  

 

Figure 16: Histogram of rewards predicted by Monte Carlo Simulation of 1000 random alarm 

combinations 

Reinforcement Learning Results 

Using the backbone detailed in the research methodology section for RL model training, we trained an 

RL agent to configure and generate alarms that people are more responsive/attentive to.  Figure 26 

shows the alarm actions picked over the course of 700 episodes. Each dot represents a mode selected 

by the RL agent each time the SUMO simulation detected a hazardous vehicle. Red dots indicate 

vibration alarms while blue dots represent sound and vibration. Grey dots indicate when the RL agent 

did not raise the alarm when SUMO detected a hazardous vehicle. In general, the RL agent would take 

two to three alarm actions per episode before those episodes terminated when the synthetic worker 

completed placing all six cones, consistent with the VR user studies. 
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Figure 17: Actions performed by the RL agent over all training episodes. RL agent converged 

on sound + vibration alarm of mode 6 (duration of 3.8 seconds duration, repeated every 

second, repeated two times). Red dot: vibration only; Blue dot: Sound + vibration based 

alarms; Grey dot: RL agent skipped an alarm on a triggered event 

As indicated in the Methodology section, the RL agent was defined to take random actions in the first 

350 episodes before using the Proximal Policy Optimization in all subsequent episodes. Once the RL 

agent started using this optimization approach, it quickly settled on using sound and vibration alarms of 

mode 6 (duration of 3.8 seconds duration, repeated every second, repeated two times).  Figure 27 

below shows the moving average reward of every 100 actions taken by the alarm agent, with a grey line 

indicating the initial reward random actions taken in the first 350 episodes and a blue line indicating 

rewards resulting from the RL agent using the PPO approach. Rewards steadily increase then hover at 

around 500 at the end of the training episodes. 

 

 

Figure 18: Moving average rewards over every 100 alarm actions by the RL agent. Blue line: 

RL actions; Grey line: Random actions 
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The first 350 episodes constituted a kind of Monte Carlo simulation for the RL agent to see a reward 

distribution for the full range of possible alarm characteristics before deciding on how to optimize. Table 

10 below shows the average reward observed by the RL agent resulting from the alarm actions in the 

first 350 episodes, which can be compared to the Monte Carlo simulation results in Table 9. Sound with 

vibration alarms of mode 5 and vibration alarms of mode 6 (duration of 3.8 seconds duration, repeated 

every second, repeated two times) resulted in the highest average rewards after 350 training episodes. 

It is worth noting that sound with vibration alarm mode 6, the alarm action constantly selected by the RL 

agent towards the end of training showed a relatively small reward after the first 350 episodes, below 

the average reward observed from all alarm characteristic combinations (m=330.5)  

Table 10: Average reward observed over the first 350 episodes where random alarm 

characteristics were raised by the RL agent 

Mode 

Modality 

vibration Sound + vibration 

1 700.8 397.7 

2 437.5 250.0 

3 79.5 402.0 

4 228.3 83.3 

5 375.0 662.5 

6 730.8 177.4 

7 232.1 45.5 

8 700.0 84.6 

9 692.3 100.0 

10 583.3 136.0 

11 -145.8 -35.7 

12 400.0 281.3 

13 250.0 321.4 

14 191.7 411.8 

15 653.8 490.4 
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Discussion of Findings 

Body and head reaction times averaged around 2.5 seconds. While the average watch 

acknowledgement time was far greater than 2 seconds, the most common watch acknowledgement 

time is also around 2 seconds. In general, these statistics from preliminary VR user studies are similar to 

literature figures citing reaction times to be around 2 seconds to alarms and other safety scenarios. 

While the current attention monitoring system does not distinguish between whether participants saw 

vehicles in their peripheral or center of vision, the general statistics indicate that vehicles are often 

already in a person’s field of view during alarms. The fact that vehicle attention reaction times are much 

lower than body movement and head turn reaction times suggest that workers may have general 

awareness of vehicles well before they physically move to investigate the alarm’s cause or avoid an 

accident. Generally, this brings into question whether safety systems should expect worker’s situation 

awareness to change in the same expected amount of time as physical reactions. That said, the total 

number of participants in statistical analyses is 33 and much lower when looking at specific alarm 

characteristic combinations. 

Monte Carlo simulation results show that vibration alarms of mode 1 (duration of 1.8 seconds duration, 

never repeated) and 15 (duration of 3.8 seconds duration, repeated every 2 seconds, repeated three 

times) as well as sound with vibration alarms of mode 1 (duration of 1.8 seconds duration, never 

repeated) and 3 (duration of 3.8 seconds duration, never repeated) resulted in higher relative rewards 

compared to other alarm characteristic combinations.  These results are expected considering that these 

alarm modality and modes generally resulted in faster body movement reaction times during VR user 

studies  and the reward function assigns the highest reward value for that form of worker reaction. 

Surprisingly, the RL agent did not converge on any of these alarm characteristic combinations during the 

final training episodes. While its actions in the latter half of training did result in higher rewards on 

average, the RL agent also never seemed to actively explore the other alarm modes during its use of the 

PPO approach. Based on Table 10, the RL agent should have tried modes 1, 6, or 8 of the vibration alarm 

modality, since these modes resulted in the highest average rewards after 350 episodes. Furthermore, 

Figure 27 shows a “plateau” of rewards in the latter training episodes. Ideally, this plateau should have 

prompted the RL agent to explore other alarm characteristics to see they resulted in still higher rewards. 

Differences between Table 9 and 10 show that the RL agent could expect higher rewards from alarm 

characteristics different from Monte Carlo simulations. Table 10 shows that sound with vibration alarms 

modes 5 and 15 resulted in higher average rewards, while Table  9 shows modes 1 and 3 resulting in 

higher rewards for the same modality. It is possible that more randomized alarm exploration training 

episodes may be required for the RL agent to see the same expected reward distributions as Monte 

Carlo. 
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Outputs, Outcomes, Impacts 

Outputs 

Publications: 

• Ergan, S., Zou, Z., Bernardes, S., Zuo, F., and Ozbay, K. (2022). “Developing an integrated 
platform to enable hardware-in-the-loop for synchronous VR, traffic simulation and sensor 
interactions.” Advanced Engineering Informatics,  51, January 2022, 101476.  

• Qin, J., Lu, D., and Ergan, S. (2022). “Towards increased situational awareness at unstructured 
work zones: Analysis of response data captured in VR based micro traffic simulations.” ICCCBE 
2022 (abstract accepted).  

• Bernardes, S. D., Zou, Z., Zuo, F., Ergan, S., Khan, J. A. and Ozbay, K. (2021). “Development of a 
Virtual-Reality Based Immersive and Integrated Traffic Simulation Platform for Studying Traffic 
Work Zone Safety Problems”. In TRB Annual Meeting, Transportation Research Board.  

Posters: 

• Lu, D., Bernardes, S., Zuo, F., Ergan, S., and Ozbay, K. (2022). “Urban ad-hoc construction zones: 
Human behavior evaluation towards safety notifications.” Wagner, Urban Research Day, March 
8, 2022, Manhattan, NY. 

Exhibits: 

• Lu, D., (2022). “Urban ad-hoc roadway construction zones: Worker behavior evaluation towards 
safety notifications.” Tandon Research Excellence Exhibit, April 29,  2022, Brooklyn, NY.  

Protoype: 

• “Developing an integrated platform to enable hardware-in-the-loop for synchronous VR, traffic 
simulation and sensor interactions”- functional prototype developed for user studies and data 
collection on worker behavioral data during dangerous traffic simulations. 

• 3 virtual reality models simulating three mobile/short term work zones and activities. 

Dataset: 

• Please check the data management plan for the submitted datasets for this project. 

Code:  

• Code developed in Phyton to get raw data captured in VR user studies (timestamped body 
movements) and convert them to identified safety metrics (i.e., # of times and time it takes for 
an alarm is acknowledged by a worker, # of times and time it takes for a worker to change gaze 
direction towards traffic flow, # of times and time it takes for a worker to detect hazardous 

https://www.sciencedirect.com/science/article/abs/pii/S1474034621002263?via%3Dihub#!
https://www.nyu.edu/content/dam/nyu/urbanInitiative/documents/Urban-Research-Day-2022.pdf
https://engineering.nyu.edu/events/2022/04/29/2022-tandon-research-excellence-exhibit
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vehicles after an alarm is triggered, # of times and time it takes for a worker to move away from 
the traffic flow). 

• Code developed in Monte Carlo simulation to generate synthetic observation states for worker 
behaviors (which simulates a worker’s response using historical worker responses towards 
generated alarms) to increase the training dataset for RL agent training. 

• Code developed in Phyton to build the RL agent model and train the agent.  
 

Outcomes 

• The outcome of this research is an attempt to calibrate when, at what frequency, and how to 
(with what modalities) share warnings from simulated virtual environments as well as real 
vehicles and sensors with workers involved in active work zones for effective responses towards 
reduction of incidents.  

• The developed VR enabled micro simulation platform serves as a platform to be leveraged for 
workforce training for increasing situational awareness at work zones.  

• The reinforcement learning model rained from the user studies data can be further improved to 
deploy to physical work zones for alarm delivery to notify construction workers onsite for 
potentially dangerous situations. 

• The research team initiated partnership conversations with Civil and Environmental (CEE) and 
Electrical and Computer Engineering (ECE) faculty members from North Carolina at Charlotte 
(NCC) for collaborating on data sharing and potentially submitting a joint NSF proposal.  

• The research project’s overview is presented online at: 
https://c2smart.engineering.nyu.edu/work-zone-safety-iii-calibration-of-safety-notifications-
through-reinforcement-learning-and-eye-tracking/  

• The research team created a database hosted at C2SMART’s PostgreSQL server for storing the 
data collected in real-time by the sensors implemented for virtually delimiting the bounds of the 
work zone based on the physical environment of the lab. The database also serves as backend 
for the VR + Traffic simulation platform. The database is restricted access for now, only the 
research team has the credentials to insert and retrieve data from it. 

• The research team hosted 1 high school student through the ARISE program at NYU. 

• The research team hosted 2 undergraduate students (1 CUE and 1 CSE) to work with the 
research team on data analysis.  

 

Impacts 

• The research will produce a RL based models  to implement in different real-word work zone 
scenarios with hazardous situation for workers and notify workers in maximum efficiency (i.e., 
optimum number of notifications without losing worker attention). Research outcomes will be 
shared with DOTs and FHWA and suggested as policy implementations for reduction of incidents 
at work zones.  

• The research outcomes are aiming to reduce the number of incidents/accidents due to worker 
attention problems at work zones through reduction of alarm fatigue. In 2019, the Federal 
Highway Administration reported 762 crashes at roadway work zones, resulting in 842 fatalities, 
135 of which were construction workers (BLS, 2019). Nearly a third of these fatalities involved 

https://c2smart.engineering.nyu.edu/work-zone-safety-iii-calibration-of-safety-notifications-through-reinforcement-learning-and-eye-tracking/
https://c2smart.engineering.nyu.edu/work-zone-safety-iii-calibration-of-safety-notifications-through-reinforcement-learning-and-eye-tracking/
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speeding vehicles (FHWA, 2022). A recent survey conducted by the Associated General 
Contractors (AGC) of America found that sixty percent of highway contractors reported motor 
vehicle accidents in their construction work zones during 2020 (AGC, 2021). 

Conclusion 

Overall, results indicate that the RL agent can at least perform better than random alarm actions after a 

small number of training episodes. The optimization approaches within the field of RL research (PPO, 

actor-critic, Deep Q-learning) will need to be explored further to see if the RL agent can at least choose 

alarm actions as expected by Monte Carlo simulations. Specifically, this future work constitutes 

investigating the Tensorforce code library and other machine learning code bases for ways to effectively 

explore and optimize alarm actions. The “plateau” of rewards can also be the result of how the reward 

function is specified. The implemented reward function assigns a constant value based on which worker 

reaction to the alarm is the fastest, regardless of how short the worker’s reaction time is and regardless 

of whether the worker quickly reacted in a combination of forms (e.g., head turn and body movement). 

Different reward functions that can produce more variation in reward values could possibly provide a 

better reward gradient for the RL agent to search over. For example, the reward function can also 

increase the reward for body movements if the worker’s body movement reaction time is one or more 

standard deviations smaller than the expected body move reaction time. Improvements to the attention 

monitoring system, such as distinguishing between when workers see vehicles in their central field of 

view or just their periphery, can also feed into ways the reward function can vary the final reward value 

for a better gradient. Differences observed between rewards resulting from randomized RL actions and 

predicted by Monte Carlo simulations suggest that RL agents will need a significantly more training 

episodes to potentially see the full “landscape” of rewards resulting from all alarm actions. These 

improvements to the RL agent reward function, optimization approach, and training configurations will 

help future work on using RL to optimize alarm characteristics during live VR user studies. 
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